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7. POWER SYSTEM STABILITY 

            7.1 INTRODUCTION 

                            A large power system consists of a number of synchronous machines (or 

equipments or components) operating in synchronism. During normal operation i.e, during 

steady state conditions the different components of power system remain in equilibrium (i.e, 

synchronism) with respect to each other. When the system is subjected to some form of 

disturbance, there is a tendency for the system to develop forces to bring it to a normal or 

stable condition. The ability of a system to reach a normal or stable condition after being 

disturbed is called stability. 

                             The term stability refers to stable operation of the synchronous machines 

connected to a power system when they are subjected to sudden disturbances. Hence we can 

say that the stability is the ability of a power system to return to stable operation when it is 

subjected to a disturbance.   The major disturbances which cause stability problem are the 

loss of generations, excitations, loss of transmission facilities, switching operations, 

momentary changes in loads and faults etc. 

                        The basic purpose for conducting stability studies is to see whether the 

proposed or existing system will remain in stable or equilibrium during or after the 

disturbance. The data obtained from the stability studies are usually voltages, internal 

machine angle (i.e, load or torque angle), currents, powers, speeds and torques of the 

machines as well as voltages at the buses and power flows in the lines of the power system 

network during and immediately after the disturbances. The data obtained from stability 

studies help us to design adequate protective scheme of the power system network. 

    7.2 CLASSIFICATION OF STABILITY STUDIES 

                   When the system is subjected to some form of disturbance, there is a tendency for the 

system to develop forces to bring it to a normal or stable condition. The ability of a system 

to reach a normal or stable condition after being disturbed is called stability. 

 The stability limit is the max power that can be transferred in a network between the sources 

and loads without loss of synchronism. 

        Depending on the nature and magnitude of disturbances the stability studies can be 

classified in to the following types 

            1. Steady state stability 

            2. Transient stability 
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      1. Steady state stability 

               The steady state stability is defined as the ability of a power system to remain stable 

(i.e., without losing synchronism) for small disturbances (such as gradual changes in load). If 

the magnitude of disturbance is small such as gradual change in load, the dynamics of 

rotating machines will not effected and hence dynamical equations of the rotating machines 

(such as synchronous machines etc) will not appear in the mathematical formulation of the 

power system for the purpose of stability studies. This is the simplest case of stability and is 

referred to as steady state stability of the system. Steady state stability is a function of 

operating conditions only. 

              The steady state stability limit refers to the maximum power which can be transferred 

through the system without loss of stability for small disturbances. 

              Steady state stability is subdivided in to static and dynamic stabilities to make a 

distinction between operations with and without automatic control devices such as governors 

and voltage regulators. 

              Static stability refers to inherent stability that prevails without the aid of automatic 

control devices. 

              Dynamic stability refers to artificial stability given to an inherently unstable system by 

automatic control devices. Dynamic stability is concerned with small disturbances lasting for 

times of order of 10 to 30 seconds. 

     2. Transient stability 

              The transient stability is defined as the ability of a power system to remain stable (i.e., 

without loosing synchronism) for large disturbances. (Example of large disturbances are 
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sudden change in loads, loss of generations, excitations, transmission facilities, switching 

operations and faults). Transient stability is a function of both system operating conditions 

and the disturbances. 

         The maximum power which can be transferred through the system without the loss of 

stability under sudden disturbances is referred as transient stability limit. 

           7.3 POWER ANGLE CURVE 

              Case (i): Generator loaded at its terminals 

          The graphical representation of power Pe and the load angle δ is called the power-angle 

diagram or power angle curve. Such a diagram is widely used in power system stability 

studies. Fig(7.1) shows a synchronous machine having a direct axis synchronous reactance Xd 

 

                                Fig.(7.1): A Synchronous machine loaded at its terminals(here take Xl=0) 

    

 

Fig.(7.2): Power angle curve 

 

 Let     E= E =voltage behind direct axis synchronous reactance of generator 

                                V= 0V terminal voltage of generator. 

The complex power output of generator is  

    S=VI
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      The real power output, Pe of the generator is given by 

 Pe=R.P of (S)  sin
dX

VE
                                                                              --- (7.3)         

Thus, the real power output depends on dXVE ,,  and power angle δ. 

  The reactive power  output , Qe of the generator is given by 

                 Qe = I.P of (S) 
dd X

V

X

VE
2

cos 

                                                          

--- (7.4)         

If line to line values of E and V are used in eqns.(7.3) and(7.4), we directly get 3-Φ   power. 

     Fig.(7.2) shows the steady-state real power variation with power angle for both generator and 

motor action for constant values of E,V and Xd. This curve is known as power angle curve. 

The condition of positive value of δ ,i..e E leading V, applies to the generator action and the 

condition  of negative value of  δ ,i.e, E lagging V applies to the motor action. 

The maximum steady-state power transfer occurs when δ=90 

              From eqn.(7.3),  
dd

e,
X

VE

X

VE
P  90sinmax  

  Maximum power is transferred when δ=90
0
 . As δ is increased beyond 90

0
 ,Pe decreases and 

becomes zero at δ=180
0
. Beyond δ=180

0
 ,Pe becomes negative which implies that the power 

flow direction is reversed and the power is supplied from the infinite bus to the generator. 

The value of Pe,max is often called the pull-out or steady-state limit. In actual practice δ  is kept 

round 30
0  

 

    Assume that the generator is working under steady state conditions and the power angle δ 

increases by  a small amount Δδ. The increase in synchronous power output is given by  
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--- (7.5)  

  Where Pr synchronizing power coefficient 

Case (ii): Generator connected to Infinite bus. 

 

                                         Fig.(7.3): A synchronous machine connected to infinite bus 

The above fig.(7.3) shows a synchronous machine connected to an infinite bus through a 

transmission line of reactance Xl. Let us assume that the line resistance and capacitance are 

neglected. 

Let  V=V 0 =voltage of infinite bus                                                                                                                                  

               E=E  =voltage behind direct axis synchronous reactance of the machine. 

The complex power o/p the generator is  

 S=V I
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      The real power output of the generator is  

  sinsin maxP
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     The maximum steady state power transfer Pmax occurs when ,δ=90
0  

and equals to 
X

VE
 

 
max

E V
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X
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--- (7.8)         

 Transfer reactance: The total reactance X between two voltage sources V and E is called the 

transfer reactance. It is seen that the maximum power limit is inversely proportional to the 

transfer reactance. 

Case (iii) :Power transfer through Impedance  

           In all electrical machines and transmission lines, the resistance is negligible as 

compared to inductive reactance. However, it is instructive to study the power transfer 

through an impedance Z.  

 

Fig.(7.4) 

   The complex power received by an infinite bus is  

 S2  = P2+jQ2 
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 Active power received by infinite bus 
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The angle, α is a function of the impedance of the line therefore, the power received Pe, is 

maximum,  when α + δ=90
0
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In actual practice R is very small as compared to X and therefore, the practical application of 

equation is limited. Eqn.(7.11) shows that if X=0, power transferred is zero. Thus a finite 

value of reactance is necessary for power transfer. 

7.4 STABILITY LIMITS 

        The stability limit is the max. power that can be transferred in a network between 

sources and loads without loss of synchronism. 

          The steady state stability limit is the max. power that can be transferred without the 

system becoming unstable, when the load is increased gradually, under steady state condition. 
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          Transient stability limit is the max. power that can be transferred with out the system 

becoming unstable when a sudden or large disturbance occurs. 

          The system experiences a shock by sudden and large power changes and violent 

fluctuations of voltage will occur. Consequently, individual machines or group of machines 

may go out of step. The rapidity of the application of a large disturbance is responsible for 

loss of stability otherwise it may be possible to maintain stability if the same large load is 

applied gradually. Thus the transient stability is lower than the steady-state stability. 

7.5 POWER ANGLE EQUATION (OR STEADY STATE STABILITY LIMIT) IN    

TERMS OF ABCD PARAMETERS 

Consider a simple system consisting of a synchronous generator connected to an infinite bus 

through a network represented by the ABCD Parameters as shown in fig.(7.5) 

                                    

            Fig.(7.5) : Synchronous generator connected to an infinite bus through a two port network 

The sending end and the receiving end voltages are assumed as  
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           7.6 DYNAMICS OF SYNCHRONOUS MACHINE 

   The kinetic energy of the rotor of the synchronous machine is 
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We shall define the inertia constant H such that 
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       Where     G = machine rating in MVA 

                       H = inertia constant in MJ/MVA 
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        Where M=the inertia constant 

Taking G as base the inertia constant in p.u  is 
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The inertia constant H has a characteristic value or a range of values for each class of machines. 

7.7 SWING EQUATION 

                    The behaviour of a synchronous machine during transients is described as swing 

equation.  Fig.(7.6) shows the torque, speed and flow of a mechanical and electrical powers 

in a synchronous a  machine. It is assumed that the windage, friction and iron loss is 

negligible. 

 

                        Fig.(7.6) 

          Under steady state operating condition the Te and Tm are equal and machine runs at 

constant speed. If there is a difference between the two torques then the rotor will have an 

accelerating or decelerating torque 

 Ta=Tm-Te                                                                                    --- (7.15) 

              By Newton’s second law of motion we can say that the accelerating torque, Ta is 

directly proportional to angular acceleration. 
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  Where      J = The total moment of inertia of the rotor mass in kg - m
2
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                  θm= Angular displacement of the rotor with respect to a stationary axis in    

                         mechanical  radians. 

                  t=Time, in seconds. 

                 Tm= The mechanical (or) shaft torques supplied by the prime mover in N-m. 

                 Te= Net electrical (or) electromagnetic torque in N - m. 

                 Ta= Net accelerating torque in N - m. 

Multiplying eqn.(7.1) by sm  

             MWPP
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Where         Pm= Mechanical power  input in MW 

                         Pe= Electrical power output in MW; stator copper loss is assumed to be negligible 
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From eqns. (7.17) and (7.18) 
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Where      θe=angle in rad(elect) 

It is more convenient to measure the angular position of the rotor w.r.t a synchronously 

rotating frame of reference. The angular displacement θe and δm are related to synchronous 

speed by the following   equation 

          δ=θe- ωst                                                                                                --- (7.20) 

           Differentiating both sides w.r.t  ‘t’ 
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 Fig.(7.7) 

                From eqns.(7.19) and (7.21) 
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Dividing throughout by G, the MVA rating of the machine, we can get 
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        The above equation is called swing equation of the machine, is the fundamental equation 

which governs the rotational dynamics of the synchronous machine in stability studies. It is a 

second order differential equation where the damping term (proportional to dδ/dt) is absent 

because of the assumption of a lossless machine and the damper winding has been ignored. 

    When swing equation is solved we obtain the expression for δ  as a function of time. A 

graph of solution is called the swing curve of the machine and the inspection of the swing 

curves of all the machines of the system will show whether the machines remain in 

synchronism or not after a disturbance.  

     Multi machine system 

In a multi machine system a common system base must be chosen 

Let Gmach=machine MVA rating (base) 

 Gsystem=system MVA base 
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Multiplying the eqn.(7.23) by 
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 on both sides, we get 
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Machines swinging coherently 

  The swing equations of two machines on a common system base 
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Since the machine rotors swing together (coherently) 
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By adding eqns.(7.25) & (7.26), we get 

 
2

1 2
1 2 1 22

( ) ( )
. .

m m e e

H H d
P P P P

f f dt



 

 
     

 

 
                    em

eq
PP

dt

d

f

H


2

2

.




                                                              --- (7.27) 

Where            Pm=Pm1+Pm2 

     Pe=Pe1+Pe2 

     Heq=H1+H2                                                                           --- (7.28) 

The two machines swing coherently are thus reduced to a single machine as in eqn.(7.27). 

The equivalent inertia in eqn.(7.28) can be written as 
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The above results are easily extendable to any no. of machines swinging coherently. 

Problem-1: A 2 pole, 50 Hz, 60 MVA turbo generator has a moment of inertia of 3109 kg-m
2
. 

 Calculate a) the kinetic energy in MJ at rated speed.        b) the inertia constant M and H 
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 c)the inertia constant on 50MVA base 

Solution: Given that 

P=2,  f=50 Hz,  
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2

1 32   

b) We know that, 

       KE=GH= sM
2

1
 

        H= MVAMJ
G

KE
/4.7

60

444
  

f
P

fPNPP
sms ..2

120

60

.2

260

..2

22



 

 

We  also know that, 

    KE= sM
2

1

s

KE
M



2
  

f

KE

..2

2


 radelecMJ 


 sec/828.2

5014.3

444
 

c) Per unit inertia constant, 

                                                

pu
MVAbase

M
0565.0

50

828.2
=Mpu   

      Problem-2: A 4 pole, 50 Hz, turbo generator rated at 100MVA, 11kV has an inertia constant 

of 8 MJ/MVA 

a) Find the stored energy in the rotor at synchronous speed 

b) If the mechanical input is suddenly raised to 80MW for an electrical load of 50MW, find 

rotor         acceleration, neglecting mechanical and electrical losses. 

c) If the acceleration calculated in part(b) is maintained for 10 cycles, find the  change in 

torque     angle, rotor speed in rpm at the end of this period. 

     Solution: Given that 

f=50Hz, P=4,  G=100MVA 

V=11KV, H=8MJ/MVA 

a) Stored energy KE=GH=100 x 8=800MJ 
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b) Pa=Pm-Pe =80-50= 30 MW 

               

degsec/
45

4

50180

800

30
2

2















elecMJ
f

GH
M

MW
t

M


 

                                
radelecMJ 


 sec/

16

50

800


 

                

2

2

2

2

2

sec/deg5.337
4

4530
30

45

4
reeelec

tdt

d








 



   

        c) Change in torque angle and rotor speed 

                  
89.5

16

30
2

2







 

M

P

t

a  

           Taking integration on both sides on both sides, 

              t
dt

d
89.5


 

          Taking integration once again on both sides on both sides 

         
     

2945.2 t  

               We know that frequency f=50Hz=50cycles/sec 

              i.e. 50 cycles--------1sec 

                   10 cycles--------10/50=0.2sec = t 

                 
reeelec

radelect

deg75.6
180

1178.0

1178.02.0945.2945.2 22









 

                    

5.89 5.89 0.2 1.177 / sec
d

t rad
dt


   

 
                         

1.177
60 11.2

2
rpm rpm  


 

                     Rotor speed at the end of 10 cycles 

 rpm
P

f
219.15112.11

4

50120
619.5

120



  

Problem-3: A 50 Hz synchronous generator is connected to an infinite bus through a line. 

The p.u reactance of generator and line are j0.3pu and j0.2pu respectively. The generator no 

load voltage is 1.1pu and that of infinite bus is 1.0pu. The inertia constant of generator is 

3MJ/MVA. Determine the frequency of natural oscillation if the generator is loaded to (i) 

60%  (ii) 75% of its max power transfer capacity. 
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Solution: Given data 

     Total reactance X=0.3+0.2=0.5 

     E=1.1pu,   V=1.0pu,  H=3MJ/M 

(i) For 60% loading 

0

max

max

max

max 86.366.0
6.0

sinsin  
P

P

P

P
PP e

e
 

         

Hzradf

f

GH
M

X

EVP

M
P

f

n

e

e

n

53.1
2

6.9
sec/6.9

50

376.1

50

3

.50

31

.

76.18.0
5.0

11.1
cos

/

2/1

0

2/1

0








 






















































 

       (ii) For 75% loading 

             0

max

59.4875.0sin  
P

Pe  

              

Hzrad
M

P

f

X

EVP

e

n

e

39.1
2

726.8
sec/726.8

50

3455.1

455.16614.0
5.0

11.1
cos

2/1

2/1

0

0








 

























































 

     7.8 SWING CURVES 

       The swing equation (7.23) is a non-linear differential equation of the second order. The 

solution of which gives the relationship between torque or load angle (δ) usually in radians  

and time in seconds. The graph between load angle and time is called Swing Curve. Swing 

curves provide information regarding stability. The fig.(7.8) show the tendency of δ to 

oscillate or increase beyond the point of return. If δ increases continuously with time the 

system is unstable. While if δ starts decreasing after reaching a maximum value it is said that 

the system will remain stable. 

         Swing curves are useful in determining the adequacy of relay protection on power 

systems with regard to the clearing of faults before one or more machines become unstable 

and fall out of synchronism, The critical clearing time is found to specify the correct speed of 
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the circuit breaker. The solution of swing equation involves elliptic integrals. Step-by-step 

 

 Fig.(7.8): Swing curve 

method may be used for numerical solution of swing equation. Nowadays digital computers 

are being employed to solve swing equation for a multi-machine system. However for a two 

machine system, there is a graphical method of determining whether the two machines are 

running at stand-still with respect to each other. The method can also be used to access the 

transient stability of a single machine system connected to infinite bus bars. This method is 

known as equal area criterion for stability, which eliminates the actual solving of swing 

equation. 

7.9 ANALYSIS OF STEADY STATE STABILITY 

The steady state stability limit of a particular circuit of a power system is defined as the max. 

power that can be transmitted to receiving end with out loss of synchronism. 

 

Fig.(7.9): Synchronous machine connected to an infinite bus 

Consider the simple system  shown in fig.(7.9), whose dynamics is described by equations. 

 
2

2
( )m e

d
M P P

dt


 

                                                                     
--- (7.29) 

Where   M=
f

H


 in pu system 
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 And  sinsin maxP
X

VE
Pe 

                                                                  
--- (7.30) 

Let the system be operating with steady power transfer with a torque angle δ0. In this 

operating condition power output Pe0. Now the mechanical power input Pm is equal to Pe0 

under ideal condition. 

 i.e. Pm=Pe0=Pmax sinδ0                                                                  --- (7.31) 

With power input, Pm remaining same let us assume that the electrical power output increases 

by a small amount ΔP. Now the torque angle is changed by a small amount Δδ. Therefore the 

new value of torque angle is (δ0+Δδ)  

The electrical power output for this new torque angle (δ0+Δδ) is given by  

  )30.7.()sin( 0max0

1 eqnfromPPPP ee  

        

                       

   sincoscossin 00max0 PPPe                            --- (7.32) 

Since Δδ is small Sin Δδ ≈ Δδ 

    Cos Δδ ≈ 1 

0max0max0 cossin   PPPPe                                                          
--- (7.33) 

From eqns.(7.32)  & (7.33) 

  Pe0+ΔP=Pe0+(Pmax cos δ0)Δδ 

  ΔP=(Pmax cos δ0) Δ                                                                                   --- (7.34) 

  
0

0max cos 























Pe
P

P

                                                                 

--- (7.35) 

From the swing equation, 

  
2

2 m e

d
M P P

dt


   

For a torque angle of δ=δ0+Δδ, the electrical power Pe in the eqn.(7.29) should be replaced by 

(Pc0+ΔP) 

    )( 00

2

PPP
dt

d
M em    

Since δ0 is constant and Pm=Pe0, the above equation can be written as    

           P
dt

d
M 


2

2 

                                                                                     
--- (7.36) 

From eqns. (7.34) & (7.36) 

2

max 02
( cos )

d
M P

dt


 


    
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2

max 02
cos 0

d
M P

dt
     

                                                                
--- (7.37) 

Let  
2

2

max 02
, cos

d
M x P C

dt
   

0)(

0

2

2









CMx

CMx

                                                                            

--- (7.38) 

In the above equation since Δδ≠0 

 
M

P

M

C
x

M

C
x

CMx

0max2

2

cos

0









 

                     
M

P

M

P
x

e

00max cos




















                                            
--- (7.39) 

Case (i) : When C is +ve( i.e. 0
0















eP

 or Pmax cosδ0>0) 

        In this case the roots are purely imaginary and conjugate. Hence the system behaviour is 

oscillatory about δ0. In this analysis the resistances in system have been neglected. If we 

include the resistances in analysis then the roots will be complex conjugate and the response 

will be damped oscillatory. Therefore in a practical system, the system is stable for small 

increment in power provided. 

 Pmax cosδ0>0 or 0
0















eP

 

    Case (ii) : When C is –ve (i.e 0
0















eP

 or Pmax cosδ0<0) 

     In this case the roots are real and equal in magnitude. One of the root is +ve and other is –ve. 

Due to the +ve root the torque angle increases with out bound. When there is a small 

increment in power and machine will loose synchronism. Hence the machine becomes 

unstable for small changes in power provided. 

 Pmax cosδ0<0 or 0
0















eP

 

Here 
0















eP

 is known as synchronizing coefficient. This is also called stiffness of   

Synchronous machine. 
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Assuming |E| and |V| to remain constant, the system is unstable if  

 0cos
X

VE
<0  (Or)  δ0>90 

The max .power that can be transmitted without loss of stability occurs for  

 δ0=90 

and is given by  

 
X

VE
P max  

       Assumptions:  

 Generators are represented by constant impedances in series with no load voltages. 

 The mechanical power input is constant. 

 Damping is negligible. 

 Load angle variations are small. 

 Speed variations are negligible. 

7.10 TRANSIENT STABILITY 

 Transient stability limit is the maximum power that can be transferred between the 

sources and sinks without the system becoming unstable when a sudden or large disturbance 

occurs. 

Assumptions: 

1. Transmissions line as well as synchronous machine resistance is neglected. 

2. Damping term contributed by synchronous machine damper winding is neglected. 

3. Rotor speed is assumed to be synchronous. 

4. Mechanical power input to machine remains constant. 

5. Voltage behind transient reactance is assumed remains constant. 

6. Loads are modelled as constant admittances. 

The transient stability can be analysed by following methods  

 i) Equal Area criterion. 

ii) Point by point method 

iii) Runga-Kutta method 

7.11 EQUAL AREA CRITERION 

              The stability of a single machine connected to an infinite bus can be studied by the 

use of equal area criterion. Fig (7.10) shows the power-angle curve for an equivalent 

generator (representing a power export area) connected to an infinite bus. 
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             Suppose that the system is operating under steady-state conditions at a power-angle 

δ0 when a large local load ∆P within the power exporting area is switched off. Assume that 

the mechanical input remains the same, the excess of input over output is ∆P initially. The 

rotor is accelerated (Pa=Pm-Pe) leading to an increase in δ 

             If Pe1=Pe0+∆P then the accelerating power Pa decreases from ∆P (when δ =δ0)  to zero 

(when δ =δ1).During the time taken by the load angle to increase from δ0 to δ1, the rotor 

absorbs KE. This KE equals to the shaded area A1. At point 'b' the accelerating power is zero 

but the rotor has acquired a speed slightly greater than the synchronous speed and the angle δ 

continues to increase beyond δ1. However as δ becomes greater than δ1, Pa becomes negative 

causing the rotor to retard. The rotor swing continues till the load angle is δ 2 and the rotor 

attains a speed equal to synchronous speed. 

            Neglecting all losses (ex:-resistance, eddy current, damping etc..) the load angle δ 2 

can be obtained from the condition that the KE gained by rotor during its swing from δ 0 to δ 1 

must equal to KE returned as it swing from δ 1 to δ 2. This leads to conclusion that area A1 

must be equal to shaded area A2. This is referred as equal area criterion. 

                        

 

                           

                                                     Fig(7.10): Equal area criterion  

The equal area criterion can be proved mathematically as follows: 

               From the swing equation 

                 
M

PP

M

P

dt

d ema 


2

2
 

            On multiplying the above equation by 








dt

d
2  
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                      









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


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
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                 











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












M

P

dt

d

dt

d
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d
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d a
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                     

























M

P

dt

d

dt

d

dt

d a
22

2

        

 By taking integration on both sides 

                              














0

2
2

dP
Mdt

d
a  

                                    








0

2
dP

Mdt

d
a

 

 For a stable system (i.e. the load angle will have minimum value when) 

                    0
dt

d
  i.e.     







0

0dPa  

             The physical meaning of the integration is the estimation of the area under the curve. 

Hence  







0

0dPa  refers to zero area i.e  the area under the curve Pa should be zero, which is 

possible only where Pa has both accelerating and decelerating power that is for a part of the 

graph Pm>Pe and for the other part Pe>Pm as shown in fig.(7.10) 

          For the generator action Pm>Pe for positive area A1 and Pe>Pm for negative area A2 for 

stable operation. Hence the name equal area criterion. The area A1 represents the KE stored 

by the rotor during accelerations and the area A2 represents the KE given by the rotor to the 

system and when it is all given up, the machine has returned to original speed. 

7.12 APPLICATIONS OF EQUAL AREA CRITERION 

7.12.1. Sudden change in Mechanical Input 

The following fig.(7.11) shows the transient model of a single machine connected to infinite 

bus. 

 

Fig.(7.11) 
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The electrical power transmitted is given by 

              sinsin maxP
X

VE
Pe                                                                ---- (7.40) 

 Under steady state operating condition                                           

                        0max0 sinPPP moe                                                                        ---- (7.41) 

 The power-angle curve of the generator is shown in the following fig.(7.12).In this the steady 

state point as described by eqn. (7.41) is the point 'a'. 

 

 

Fig.(7.12) 

Let the mechanical input to the generator rotor be suddenly increased to Pm1 (by opening the 

steam value). Since Pm1>Pe the generator will have an accelerating power 

                       Pa=Pm1-Pe                                                                                                                          ---- (7.42) 

                      Where sinmaxPPe                              

        Due to accelerating power the rotor speed increases  and so the rotor angle also 

increases. This result in increased electrical power generation. Therefore the operating point 

will move upwards along the power-angle curve. At point 'b' again Pm1=Pe1, where Pe1 is the 

electrical power output corresponding to torque angle δ1. Now the rotor angle cannot stay at 

this point , because the inertia of the rotor will make the rotor to oscillate with respect to 

point b. Hence the torque angle will continue to increase till point 'c', when the operating 

point moves from b to c, Pe>Pm. There fore Pa (given by eqn.3) is negative and is called 

decelerating power. In this region (i.e. from b to c) the rotor speed decreases due to 

decelerating power. At point 'c' the speed of the rotor will be equal to synchronous speed. 
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 Note: At point 'a' the speed is synchronous speed (ωs). From ‘a’ to 'b' the speed                      

increases and then from 'b' to 'c' the speed decreases. Once again at 'c' the speed                      

is equal to ωs. Thus the rotor oscillates between point 'a' and point 'c' before                     

settling to point 'b'.  

In fig.(7.12) A1 is accelerating area and A2 is decelerating area. The equal area criterion says 

that the system is stable, if 

                                          0
2

0

 





dPa

                                                              

---- (7.43) 

To satisfy above eqn. (7.43), the accelerating area A1 should be equal to decelerating area A2. 

When the oscillations die -out the system will settle-down to a new state. In this new steady 

state Pm1 = Pe1 

                   .ˆ. Pm1 = Pe1 = Pmax sinδ1                                                                                            ---- (7.44) 

The areas A1 and A2 can be evaluated as shown below 

                          
1

0

)( 11





dPPA em                                     ---- (7.45) 

                         




dPPA me 

2

12

1

)(  

From the above discussion we can say that there is upper limit for increase in mechanical 

power   input Pm. As the mechanical power increased a limiting condition is finally reached at 

a point where the area A1=A2 as shown in fig.(7.13), the corresponding δ1 can be δ1max and δ2  

be δ2max. 

 

 

 

                                                             

Fig.(7.13)                     

Here  δ2max   = π – δ1max                                                                                                                               ---- (7.46) 

From eqn.(7.40)  Pe1max   =  Pm1max = Pmax sin δ1max 
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                      







 

max

max,11

max1 sin
P

Pm                                                               ---- (7.47)                   

From eqns. (7.46) & (7.47)  

                               

 







 

max

max,11

max2 sin
P

Pm  

From fig (7.13), we can say that any further increase in Pm1,max will make the area A2<A1. 

This means that the accelerating power is more than the decelerating power. Hence the 

system will have excess KE which causes s to increase beyond point 'c'. If the δ increases 

beyond point 'c' the decelerating power changes to accelerating power and so the system 

becomes unstable. 

7.12.2. Critical clearing angle & Critical clearing time 

          The critical clearing angle, δcc is the maximum allowable change in the power angle δ, 

before clearing the fault, without loss of synchronism. The time corresponding to this angle is 

called critical clearing time, tcc. 

          The critical clearing time, tcc can be defined as the maximum time delay that can be 

allowed to clear the fault without loss of synchronism. 

          We see that for any given initial load there is a critical clearing angle. If the actual 

clearing angle is greater than the critical value the system is unstable, otherwise  it is stable. 

So now we proceed to determine the value of the critical clearing angle for a given load. 

          Consider a single machine system as shown in fig.(7.14). Let the mechanical i/p be Pm 

and the machine is operating in steady-state with torque angle δ0. The power-angle curve for 

this system is shown in fig.(7.15). The operating point is shown as point 'a'. 

 

Fig.(7.14) 
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Fig.(7.15) 

         Let us assume a three phase fault occurs at point F in the system. Now Pe=0 and the 

operating point drops to 'b'. This means that the power transferred to infinite bus is zero and 

the entire power generated is flowing through the fault. Now the operating point moves along 

bc. Let the fault be transient in nature and so the fault be cleared by opening of the CB at 

point 'c', where δ= δc and the corresponding time be tc. Here tc is called clearing time and δc is 

called clearing angle. 

         At time tc corresponding to angle δc the faulted line is cleared by opening of the line 

circuit breaker. The system once again becomes healthy and the normal operation is restored.  

Now the operating point shifts to d . The rotor now decelerates and the operating point moves 

along de. For this transient state, if an angle δ1, can be found such that A2=A1, then the 

system is found to be stable. The stable system may finally settle down to the steady 

operating point 'a' in an oscillatory manner due to damping in the system. 

                In the above discussion it is assumed that the fault is cleared at δc, but if the fault 

clearing is delayed then the angle δ1 continuous to increase to an upper limit δmax. This 

corresponds to a point where equal areas A1 and A2 can be found for a given Pm as shown in 

fig.(7.16). For this situation the fault would have been cleared at an angle δcc as shown in 

fig(7.16). This angle δcc is called critical clearing angle. The time corresponds to this angle is 

called critical clearing time tcc. 

             If the fault is not cleared within critical clearing time, then δ1 would increase to a 

value greater than δmax. In such a situation the area A2<A1 and so the system would be 

unstable. 
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 Fig.(7.16): Critical Clearing angle 

 Equations for δcc  and  tcc: 

For a 3-phase faults in simple systems, the equations for δcc and tcc can be obtained as 

follows: 

From fig (7.16), we can get 

                                        δmax   =  π -δ0                                                              ---- (7.48) 

Under steady -state condition, for a given δ0, Pm = Pe= constant 

            .ˆ. Pm = Pe =  Pmax sinδ0                                                       ---- (7.49) 

When a  3-phase  fault occurs Pe = 0                                                                                                                                                                                                                          

   Pa = Pm – Pe= Pm = constant                                              ---- (7.50) 

The acceleration area A1 is given by 

           )( 01 0
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                                                    ---- (7.51) 

When the power feeding is reassumed after the fault 

             Pe = Pmax sinδ 

             Now Pa = Pmax sinδ - Pm                                                                       ---- (7.52) 

The decelerating area A2 is given by 
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---- (7.53) 

For the stable system A1=A2 
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---- (7.54)

 

Consider the swing equation of a single machine system   
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d
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                                                      ---- (7.55) 

During a   3-phase  fault Pe = 0 
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                                                       ---- (7.56) 

Integrating the above equation (7.56) twice w.r.t   't' 
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           At t = 0, δ = δ0   K = δ0 
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---- (7.57) 

In equation (7.57) when δ=δcc, t=tcc 
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7.12.3. Sudden Loss of one of the parallel line 

 

Fig.(7.17): Single machine connected to an infinite bus through two parallel line 
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        Consider now a single machine tied to infinite bus through two parallel lines as shown in 

fig.(7.17).Equal area criterion can be used to study the transient ability of the system when     

one of lines is switched out. Two power angle diagrams are involved.                                        

 When both of the lines are operating the power transfer is given by 

                          sinsin max

21

21

1

1

I

d

e P

XX

XX
X

EV
P 




                                      ---- (7.59) 

 When one of the lines is switched out the transfer reactance increases and the power      

transfer is given by 

                          sinsin max
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2 II
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e P
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EV
P 


                                             ---- (7.60) 

                           III PP maxmax 
 

     These two curves are as shown in fig. (7.18) 

 

Fig.(7.18) 

       The i/p to the generator is Pm and , therefore the initial conditions are represented by 

point 'a' on curve I and the initial load angle is δ0. When the line2 is switched out, the 

operating  point shifts to point 'b' on curve II. At point  'b' the power o/p is less than the power 

i/p  and the rotor is accelerated. An energy corresponding to area A1 is put into rotor. At δ = δ1 

the i/p and o/p are equal but the angle continuously increased because the rotor has       

acquired a speed slightly greater than the synchronous speed. When δ >δ1 deceleration of       

rotor starts. When δ = δ2 area A2 equals to area A1  and the rotor starts swinging back.       

After a few oscillations the load angle will   stabilize at δ1. If the initial power transfer is 

increased (line Pm is shifted upwards in fig.(7.18) a limit is reached beyond which the 

decelerating area A2 can’t be equal to accelerating area A1. The maximum value which can 

attain without loss of system stability is δm and equals to (π-δ1) radians. 

7.12.4. Fault and Subsequent circuit isolation  
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Fig.(7.19): SMIB system connected through two parallel lines 

        Consider the system shown in fig.(7.19). Equal area criterion can be used to study the       

stability of the system when a fault develops at any point F on line2 and is subsequently  

cleared by opening the CBS at both the ends of faulted line. In this case 3 power angle        

curves are involved, first for the pre fault system, second for the system during fault and        

third for the system after the fault line has been switched out(post fault condition). These        

curves are shown in fig.(7.20)  and the input is Pm. 

 

Fig.(7.20): Equal area criterion as applied to the stability study of fault and subsequent circuit   

               isolation  

           The initial load angle δ0 is determined by the intersection of the i/p line and the pre 

fault o/p curve (point a). When fault occurs the operating point shifts to 'b' on the o/p curve 

during fault. The accelerating power causes δ to increase. At angle δc when operation reaches 

point c, CBS opens and clears the fault. The operation shifts to point ‘e’ on the post fault 

curve. Now the o/p power is more than the i/p power and rotor starts decelerating. The max 

value of angle δ is δ2 such that the area A2 (=area defg ) equals to area A1(=area abcd). 

A higher i/p  Pm would cause point ‘f’  to move to right until at stability limit, point 'f' 

coincide with point 'h' as shown in fig.(7.21). A still higher value of Pm would lead to unstable 

condition. Another factor which would cause point 'f' to move to right is an increase in time 

of clearing the fault resulting in larger clearing angle δc.      

     For a given initial load there is a max value of clearing angle known as critical clearing 
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angle δcc if the stability is to be maintained. If actual clearing δc is smaller the δcc system is 

stable, if larger, the system is unstable. When δc = δcc the maximum angle up to which rotor 

swings is δmax as shown in fig (7.21). An expression for δcc can be derived as under. 

By applying equal area criterion to the above system  

   area A1=area A2. 
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Fig.(7.21): Critical clearing angle 
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7.12.5. Fault, Circuit isolation and reclosing 

        Most of the faults are of transient in nature. The transmission lines are provided with 

automatic quick reclosing circuit breakers. When a fault occurs the faulted line is de-

energised to suppress the fault and reclosed after an interval to improve stability. Fig.(7.22) 

shows the application of equal area criterion for such a case. The i/p is Pm and initial load 

angle is δ0. 

 

 

  Fig.(7.22): Equal area criterion as applied to the stability study of fault, circuit isolation and 

                   reclosing. 

When a fault occurs the operation shifts to the curve for faulted condition. When the load 

angle is δc, the faulted line is isolated and the operation shift to the post fault curve. When the 

load angle is δ0 the circuit breaker reclose and operation shifts to pre-fault curve. For stable 

operation the accelerating area A1 should be equal to decelerating area A2. The maximum 

angle to which rotor swings is δ2 and is less than δm (i.e the maximum permissible rotor swing 

if stability is to be maintained). 

7.13 SOLUTION OF SWING EQUATION BY POINT BY POINT METHOD 

       The swing equation, a differential equation governing the motion of each machine of a 

system is 

    
aP

dt

d
M 

2

2

                                                                                         
---- (7.62) 

The solution of the above equation gives load angle' δ ' as a function of time 't'. A graph of the 
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solution of the swing equation is called 'swing curve'. Inspection of the swing curves of all 

the machines of a power system will show whether the machine will remain stable or 

unstable after a disturbance. 

                 The formal solution of such system gives a set of non-linear differential equations. 

The point by point (or step by step) method is the most feasible and widely used way of 

solving the swing equations. In this method one or more variables are assumed either to be 

constants or to vary according to assumed laws throughout a short interval of time' M', so that 

as a result of assumptions made the swing equation can be solved for the changes in the other 

variables during the same time interval. 

     The main assumption for solving the swing equation by point by point method is "the 

accelerating power is constant during time interval" . 

Integrating twice, w.r.t. time’t’ of equation (7.62) and can be modified as 

After 1st integration, t
M

P

dt

d a 0


                                                          
---- (7.63) 

After 2 nd integration, 2

00
2

t
M

P
t a 

                                                      
---- (7.64) 

These two equations gives the '  ', the excess of speed of the machine over normal speed 

and ‘δ', the angular displacement of the machine with respect to reference axis rotating at 

normal speed. Here 0  and 0 values are angular displacement and angular velocity at the 

beginning of the interval. 

Dividing the total time 't' into 'n' equal intervals. Let subscript 'n' denote quantities at the end 

of interval, from equations (7.63) and (7.64), we get 
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The increments of speed and angular displacement during the n
th

 interval 
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---- (7.67)
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The equations (7.65) and (7.66) or (7.67) and (7.68) are suitable for point by point 

calculation. However, if one is interested only in the angular position but not in the speed,ωn-1

 

can be eliminated in equations (7.66) and (7.68) and write an equation like, equation (7.66) 
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but for previous interval 
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From the equations (7.66) and (7.69) 
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But we know that 
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Substituting these values in equation (7.70) 
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This equation, which gives the increment in angle during any interval in terms of the 

increment for the previous, may be used for point by point calculations in place of equations 

(7.67) and (7.69). The Lost term of the 2
nd

 differential of ‘δ' which may symbolized by ‘△2
δ’ 

The time interval ‘△t’ should be short enough to give required accuracy but not so short so as 

to un delay increase the number of point to be computed on a given swing curve. 

7.14 METHOD OF IMPROVING STABILITY 

1. By increasing inertia constant(M) 

From the swing equation 
M

P

dt

d a
2

2
, it is obvious that for given accelerating power the 

acceleration of the rotor is  inversely proportional to the moment of inertia of the machine i.e. 

the higher the moment of inertia the slower will be the change in the rotor angle of the 

machine and thus will allow a longer time for the operation of the breaker to allow a longer 

time for the operation of the breaker to isolate  the fault before the machine passes through 

the critical clearing angle. Hence transient stability can be improved either by using machines 

of higher inertia or by connecting the synchronous motors to heavy fly wheels. 

  However this cannot be employed in practice because of economic reasons. Also increasing 

‘M’ will have an undesirable effect of slowing down the response of the speed governor loop. 
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2. Increasing system voltage 

            Pe=P max sin = sin
X

EV
 

 Transient stability is  improved by increasing system voltage. Increase in system voltage 

means the higher value of max. power, Pmax  that can be transferred over the lines. Since shaft 

power Pe=Pmax sin ,therefore for a given shaft power initial load angle δ0 reduces with the 

increase in Pmax and thereby increasing difference between the critical clearing angle and 

initial load angle.  Thus machine is allowed to rotate through large angle before it reaches the 

critical clearing angle which results in greater critical clearing time and the probability of 

maintaining stability. 

3. Reduction of transfer reactance   

The steady state power limit is given by 

                  
X

EV
P max  

It can be seen from this   expression that Pmax can be increased by increasing either or both V 

and E and reducing the transfer reactance .  The following methods are available for reducing 

the transfer reactance. 

a. Use of double circuit lines 

The impedance of a double circuit line is less then that  of a single circuit line. A double 

circuit  line  doubles  the transmission capability. An additional advantage is that the 

continuity of supply is maintained  over one line with reduced  capacity when the other line is 

out of service  for maintenance or repair. But the provision of additional line can hardly be 

justified by stability   considerations alone. 

b. Use of Bundle conductors   

 The use of bundle conductors is another method of reducing reactance. Bundle   conductor  

line are generally used in EHV system for transmitting bulk power over long distances.  The   

main purpose of employing bundle conductors  in such line is to reduce corona loss and radio 

interference. 

c. Series compensation of the lines  

One method of reducing the reactance of the lines is by employing capacitors in the lines and 

such lines are known as series compensated lines . Series capacitors are employed in EHV 

lines to increase the power transfer and are most economical for transmission distance more 

than 350km.  

4. Fast switching 
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 Rapid isolation of faults is the principle way of improving transient stability. The fault 

should be cleared as fast as possible. It should be noted that the time required for fault 

removed is the sum of relay response time plus the CB operating time. 

Therefore, high speed relaying and circuit breaking are commonly used to improve stability  

during fault conditions. It has now become possible to isolated the fault in less then two 

cycles(i.e.0.04sec for 50 Hz system) 

 

RECENT METHODS 

5.  Turbine fast  valving ( or) By-pass valving 

 When the fault occurred , the generator output is reduced resulting in a high accelerating  

power. If the mechanical  input power to the turbine should  be momentarily reduced, the  

acceleration  could be reduced . Fast valving  is a means of reducing the mechanical  

input  power to the turbine  during the fault .Certain steam  valves are rapidly closed (in 0.1 

to 0.2 sec)  and immediately reopened. This procedure increases the critical clearing time. 

6. Single –pole switching 

 Majority of the line faults are LG faults. In single pole switching (also called independent   

pole  operation), the three phase of the  CB are closed or opened independently of each other. 

In the event of an LG fault, the circuit breaker pole corresponding to the fault line opened and 

the remaining two  healthy phases continue to  transfer power. Since most of the faults are 

transient in  nature, this phase can be reclosed after it has been open  for a predetermined 

time. The system should not  be operated for long periods with one  phase open. Therefore 

provision should be made to trip the whole line if one phase remaining open for a 

predetermined time. 

7. Load shedding 

 If there is in sufficient generation to maintain system frequency, some of the 

generators are disconnected during or immediately after a fault.  Thus, the stability of the 

remaining generators is improved. The unit to be disconnected is provided with a large steam 

by pass system. When the system recovers from the shock of the fault, the disconnected unit 

is resynchronized and reloaded. Extra cost of a large steam by pass system is the limitation of 

this method. Disconnection of some of consumers, that is, load shedding (removed of load), 

is also helpful in improving transient stability. 

8. HVDC links 

Increased use of HVDC links employing thyristors would alleviate stability problem. A dc  

link is asynchronous i.e. the two ac system at either end do not have to be controlled in phase 
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or even be at exactly the same frequency as they do for an ac link, and the power  transmitted 

can be readily controlled. There is no risk of a fault in one system causing loss of stability in 

the other system. 

9. Breaking resistors 

 For improving stability where clearing is delayed or a large load is suddenly lost, a resistive 

load called a braking resistor is connected at or neat the generator Bus. This load 

compensates for at least some of the reduction of load on the generators and so reduces the 

acceleration. During a fault the resistors are applied to the terminals of the generators through 

circuit breakers by means of an elaborate control scheme.  The control scheme determines the 

amount of resistance to be applied and its duration. The braking resistors remain on for a 

matter of cycles both during fault clearing and after system voltage is restored. 

10. Short circuit current limiters 

These are generally used to limit the short circuit duty of distribution lines. These may also 

be used in long transmission lines to modify favourably the transfer impedance during fault 

conditions so that the voltage profile of the system is somewhat improved, thereby raising the 

system load level during the fault. 

11. Full  load rejection technique 

Fast valving combined with high speed clearing time will sufficient to maintain stability in  

most cases. However, there are still situation where stability is difficult to maintain. To 

remedy this situation, a full load rejection scheme could be utilised after the unit is separated 

from the system. To  do this , the unit has to be equipped with a large steam by  pass system.  

To do this, the unit has to be equipped with a large steam by pass system. After  system has 

recovered from the shock caused by the fault, the unit could be resynchronized and reloaded. 

The main disadvantage is the extra cost of the large by pass system. 

7.15 HIGH SPEED CIRCUIT BREAKER- RECLOSING OR AUTO RECLOSING 

CIRCUIT BREAKERS 

             High speed circuit breaker reclosing is a method of automatically operating CBS  

according to a predetermined  sequence  of open and close operations. When a fault occurs on 

a transmission line, the CB at each end open, to isolate the line, remain open for specified 

time(delay time ) and then reclose. If the fault has cleared, then the CBS  remain closed and 

the transmission system returns to its pre-fault condition. If the fault still exist the CBS open 

and lock-out. 

       The  effect of high speed CB reclosing can be explained as follows: 
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 During a fault, the generator rotor angle can change relative to rest of the system until a 

critical angle  c is reached. If the rotor angle exceeds the critical angle the generator is no 

longer synchronized with the system i.e. it is unstable. When a fault occurs on the 

transmission  system  the output power of  any generator near the fault is reduced, the input 

power remains constant and the difference between  input and output power  accelerates  the 

generator . If the fault is not cleared, the generator will continue to accelerate  until it pulls 

out of synchronism and trips off due to protective  relay  action. If the CBS open, clear the 

fault and reclose successfully, load is reapplied to the  generator and the energy which  was 

stored in accelerating the generator is released into the system. If this is done before the 

critical angle is passed, the generator decelerate and re-establishing its stable pre-fault 

condition. For reclosing to be successful the CB must remain open long enough for  the 

integrity of the transmission line insulation level  to be re-established,  and it must reclose   

before the generator can accelerate beyond the critical angle. Detailed studies are required   to 

stability limits w.r.t. fault clearing time and delay time. If the stability limit are not accurately 

determined, instability may result/ 

       Automatic reclosing is used because approximately 80% of transmission line faults are 

transient in nature i.e. if the line is de-energized for a short time. The fault is will de-ionized 

and the integrity of the insulation system will be re-established.  

ADDITIONAL SOLVED PROBLEMS 

Problem-1: A Generator supplies power to an infinite bus via a transmission line as shown in 

figure. The machine delivers 1.0pu power and both terminal voltage of the generator and 

infinite bus are 1.0p.u .All the reactance’s are on common base. Determine the  power angle 

equation. 

Solution: The transfer reactance between Vt and V is 

                  X = j0.1+j0.4 = j0.5 
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Current supplied by the generator to the infinite bus is 
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Transient internal voltage in the generator 
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0.866 0.5 0.2(1 0.268) 0.812 0.7 1.07 40.76E j j j j       
 

Total X=j0.2+j0.1+j0.4=j0.7 

The power angle characteristic is 
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